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Abstract. Many institutions struggle to tap the potential of their large archives of radar reflectivity: these data are often affected

by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used

to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropi-

cal Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly

popular: the calibration bias of a ground radar is estimated from its average reflectivity difference to the spaceborne radar5

(SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match

between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average

of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines

which is much affected by partial beam blockage.

The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA), in10

addition to beam blockage. This extension becomes vital for radars that operate at C- or X-band. Correspondingly, the study

setup includes a C-band radar which substantially overlaps with the S-band radar. Based on the extended quality-weighting

approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses.

As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in

the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time,15

so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving

average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance

operations.

1 Introduction20

Weather radar observations are the key to quantitative precipitation estimation (QPE) with large spatial coverage and at high

resolution in space and time (in the order of 102− 103 meters, and 100− 101 minutes). Yet, the indirect nature of the precip-

itation retrieval paves the way for a multitude of systematic estimation and measurement errors. The estimation errors (in the
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retrieval of the precipitation rate R from the radar’s prime observational target variable, the radar reflectivity factor Z) is caused

mainly by the unknown microphysical properties of the target - let it be meteorological or non-meteorological. Before that,

measurement errors affect the observation of Z through a multitude of mechanisms that can accumulate as the beam propagates

through the atmosphere (such as beam blockage, or path-integrated attenuation). On top, the prominence of these measurement5

errors heavily depends on scenario-specific interaction of factors such as radar bandwidth, beam width, obstacles in the direct

and wider vicinity, topography in the radar coverage, atmospheric refractivity, or the microphysical properties of precipitation

along the beam’s propagation path. Much has been written about these sources of uncertainty, and much has been done to

address them adequately (see Villarini and Krajewski (2010) for an extensive review).

Yet, the single-most contribution of uncertainty to radar-based QPE often comes, maybe surprising to some, from the10

(mis)calibration or (in)stability of the radar instrument itself (Houze Jr et al., 2004) which can also vary in time (Wang and

Wolff, 2009). Apart from the simple fact that miscalibration can easily deteriorate the accuracy of precipitation estimates by

an order of magnitude, calibration issues become particularly annoying if weather radars are operated in a network where the

consistency of calibration between radars is a prerequisite for high-quality radar mosaics (see e.g. Seo et al. (2014)).

There are various options to carry out and monitor the calibration of a radar instrument in an operational context through15

absolute calibration techniques (based on a well-defined reference noise source, see Doviak and Zrnić (2006) for an overview).

Yet, to the reflectivity that is already measured and recorded, any changes to the instrument’s calibration are irrelevant. In

such a case, relative calibration techniques can be used to correct the measurements a posteriori. Many institutions have

archived massive radar reflectivity records over the years, but they struggle to tap the potential of these data due to unknown

and temporally volatile calibration biases. And while radar polarimetry offers new opportunities to address calibration issues,20

many archived data still originate from single-polarization radars.

As to relative calibration, the usage of rain gauge observations is typically not recommended, not only due to issues of rep-

resentativeness in space and time, but also due to the fact that a comparison between R, as observed by rain gauges, and R, as

retrieved from radar reflectivities, lumps over measurement and estimation uncertainties. As an alternative, the usage of space-

borne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement25

(GPM) platforms has become increasingly popular over the recent years. Measurement accuracies of both TRMM and GPM

are reported to have excellent calibration (within < 1dB) (Kawanishi et al., 2000; Hou et al., 2013), and thus can be used as a

reference to calibrate reflectivity. Moreover, a major benefit of relative calibration is that it allows for a posteriori correction of

historical data.

In a recent study for an S-band radar in the Philippines, Crisologo et al. (2018) adopted a technique to match ground radar30

(GR) and spaceborne radar (SR) observations. That technique was originally suggested by Bolen and Chandrasekar (2003),

then further developed by Schumacher and Houze Jr (2003), and finally by Warren et al. (2018). The underlying idea of

that technique is to match observations based on the geometric intersection of SR and GR beams. That way, the algorithm

confines the comparison to locations where both instruments have valid observations, and avoids artefacts from interpolation

or extrapolation. In that context, Crisologo et al. (2018) demonstrated that explicitly taking into account the quality of the35

GR observations is vital to enhance the consistency between SR and GR reflectivity measurements, and thus to estimate the
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calibration bias more reliably. The relevance of quality was exemplified by considering partial beam blockage: for each GR

bin, a quality index between 0 and 1 was inferred from the beam blockage fraction. These quality indices were then used to

compute a quality-weighted average of volume matched GR reflectivities.

The present study aims to extend the approach of Crisologo et al. (2018) in several respects:5

1. We extend the framework to account for the quality of GR observations by introducing path integrated attenuation (PIA)

as a quality variable, in addition to partial beam blockage. Instead of attempting to correct GR reflectivities for PIA,

we explicitly acknowledge the uncertainty of any PIA estimate by assigning a low weight to any GR bins that are

substantially affected by PIA. In order to investigate the role of PIA, we include a C-band weather radar in the present

study, in addition to the S-band radar included by Crisologo et al. (2018).10

2. We verify the ability to estimate the GR calibration bias from SR overpass data by evaluating the consistency of GR

reflectivity measurements in a region of overlap, before and after bias correction.

3. We investigate whether estimates of GR calibration bias, as obtained from SR overpass data, can be interpolated in

time in order to correct GR reflectivity observations for miscalibration, even for those times in which no suitable SR

overpasses were available.15

The latter item—the interpolation of bias estimates in time—would be a key requirement towards actually tapping the

potential of the fundamental concept in research and applications: if we aim to use SR overpass data for monitoring GR

calibration bias, and for a homogeneous correction of archived GR reflectivities, we have to assume that those bias estimates

are, to some extent, representative in time. Crisologo et al. (2018) found that the bias estimates for the Subic S-band radar

exhibited a substantial short-term temporal variability, and stated that they “would not expect changes in calibration bias to20

occur at the observed frequency, amplitude, and apparent randomness.” By investigating whether such bias estimates can be

interpolated in time, the present paper will investigate whether the apparently “volatile” behaviour of calibration bias is not a

mere artefact of the estimation procedure, but a real property of the investigated radar systems.

Section 2 of the present paper will describe the study area and the underlying radar data sets; section 3 will outline the

methodologies of matching GR and SR as well as GR and GR observations, the quantification of beam blockage and PIA, and25

the quality-based framework for bias estimation; in section 4, we will show and discuss the various inter-comparison results;

and section 5 will conclude.

2 Data and Study Area

The Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA), the country’s weather

agency, maintains a network of 10 ground radars all over the country, of which 8 are single-polarization S-Band radars and 230

are dual-polarization C-Band radars. Two of the longest running radars are Subic and Tagaytay. Between the two radars lies

Manila Bay, bordered on the east by Metro Manila, the country’s most densely populated area at approximately 13 Million
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Figure 1. Locations of the Subic (red diamond) and Tagaytay (blue diamond) radars showing the 120 km range with the region of overlap.

Metropolitan Manila is outlined in black beside Manila Bay. The relative location of the study area with respect to the Philippines is shown

in the inset.

inhabitants. This region of overlap regularly experiences torrential rains from monsoon and typhoons extending for several

days (Heistermann et al., 2013a; Lagmay et al., 2015).

2.1 Subic radar (SUB)

The Subic radar is a single-polarization S-band radar situated on top of a hill at 532 m a.s.l. in the municipality of Bataan5

(location: 14.82◦N, 120.36◦E) (see Figure 1). To its north lies the Zambales Mountains (highest peak: 2037 m a.s.l.) and to

its south stands Mt. Natib (1253 m a.s.l.). The Sierra Madre Mountains run along the eastern part of the Luzon Island, at the

far-east end of the radar coverage. Technical specifications are available in Table 1. Please note that Subic sweeps at 1.5 and

2.4 degree elevation were excluded for the years 2013 and 2014, due to apparently erratic and inconsistent behaviour.

2.2 Tagaytay radar (TAG)

Located about 100 km across the Manila Bay from the Subic radar is the Tagaytay radar, a dual-polarized C-Band radar. It

sits along the Taal Volcano caldera ridge at 752 m a.s.l. in the municipality of Batangas. The radar coverage also includes the

southern part of the Sierra Madre Mountains. Technical specifications are available in Table 1.
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Table 1. Technical specifications of Subic and Tagaytay Radar.

Subic Radar Tagaytay Radar

Bandwidth S-Band C-Band

Polarization Single-pol Dual-pol

Position (lat/lon) 14.822°N 120.363°E 14.123°N 120.974°E

Altitude 532 m a.s.l. 752 m a.s.l.

Maximum Range 120 km

Azimuth Resolution 1 ◦

Gate length 500 m

Number of elevation angles 14

Elevation angles 0.5°, 1.5°, 2.4°, 3.4°, 4.3°, 5.3°, 6.2°, 7.5°, 8.7°, 10°, 12°, 14°, 16.7°, 19.5°

Volume cycle interval 8 minutes 15 minutes

Start of operation 2012 2012

Data during the rainy seasons of 2012-2014 and 2016 are used in this study. The scanning setup for Tagaytay was exper-5

imentally changed during 2015 and reverted back in 2016. In order to ensure homogeneity in the GR intercomparison, we

excluded the year 2015 from the analysis.

2.3 Spaceborne precipitation radar

Spaceborne radar data were collected from TRMM 2A23 and 2A25 version 7 (NASA, 2017) for overpass events in 2012-

2014, and GPM 2AKu version 5A products (Iguchi et al., 2010) from 2014-2016, during the rainy season of June to De-10

cember. The data were downloaded from NASA’s Precipitation Processing System (PPS) through the STORM web interface

(https://storm.pps.eosdis.nasa.gov/storm/). The parameters of TRMM/GPM extracted for the analysis are the same as specified

in Table 3 of Warren et al. (2018).

3 Methods

3.1 Overview

We facilitate the comparison of effectively three instruments: the two ground radars and the spaceborne radar (see 2). While

throughout the study period, the available spaceborne radar platform changed from TRMM (2012-2014) to GPM (2014-2016),

the consistency between the two for the year 2014 for the study area (Crisologo et al., 2018) allows us to consider the two5

rather as a single reference instrument. The comparison of the three platforms has two main components:

1. The SR-GR comparison is motivated by the estimation of the GR calibration bias. We define that bias as the mean

difference (∆ZSR−SUB or ∆ZSR−TAG, in dBZ) between SR and GR, assuming SR to be a well-calibrated reference.
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Figure 2. Schematic diagram of the SR-GR calibration bias estimation and GR-GR inter-comparison. The SUB and TAG calibration biases

(∆ZSR−SUB and ∆ZSR−TAG, respectively) are calculated with respect to SR, and used to correct the ground radar reflectivities. The mean

difference between SUB and TAG radars are calculated before (∆ZTAG−SUB) and after bias correction (∆Z
corr
TAG−SUB)

As shown by Crisologo et al. (2018), we can improve the bias estimation if we give a lower weight to those matched

samples which we assume to be affected by a systematic GR measurement error. Please note that we use the term10

calibration bias throughout the paper, as it is more commonly used. Strictly speaking, though, it is rather an “instrument

bias” that lumps over any systematic effects of calibration and instrument stability along the radar receiver chain.

2. The GR-GR comparison is motivated by the evaluation of the consistency between the two ground radars. For that

purpose, we can consider the mean difference (∆ZTAG−SUB) between the two ground radars (in dBZ) and the stan-

dard deviation of the differences (σ(∆ZTAG−SUB), in dBZ). The differences in the region of overlap of two error-free15

ground radars would have a mean and a standard deviation of zero. Different levels of miscalibration of the two ground

radars would increase the absolute value of the mean difference (which, in turn, implies that the mean difference would

be zero if both GR were affected by the same level of miscalibration). But what about systematic measurement errors

that are spatially heterogeneous in the region of overlap (such as beam blockage or PIA)? Although they could also

affect the mean difference, we expect them to particularly increase the standard deviation of the differences. Hence, a20

removal of spatially heterogeneous measurements errors from both GR would reduce σ(∆ZTAG−SUB), while a correc-

tion of calibration bias of both GR would reduce the absolute value of(∆ZTAG−SUB). And while we admit that neither

(∆ZTAG−SUB) nor σ(∆ZTAG−SUB) could be considered imperative measures of reliability of any of the two ground

radars, we still assume that any decrease in their absolute values would raise our confidence in any of the two radars’

reflectivity observations.25
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3.2 SR–GR matching

To determine the calibration bias of each radar, we employ the relative calibration approach by using the spaceborne-radar (SR)

as a reference. In order to avoid introducing errors by interpolation, we use a volume-matching procedure. The 3D geometric

matching method proposed by Schwaller and Morris (2011), further developed by Warren et al. (2018), was used to match SR

bins to GR bins. This method has been implemented with the Subic radar for the same time period by Crisologo et al. (2018).30

In this study, we extend it to the TAG radar. Since the two radars are operating under the same scanning strategy and spatial

resolution, the thresholds applied in filtering the data are kept the same as in the SR-SUB comparison described in Section 3.2

Table 3 of Crisologo et al. (2018). Details of the SR data specifications and the matching procedure can be found in Crisologo

et al. (2018).

3.3 GR–GR matching

We compare the reflectivities of both ground radars in the overlapping region to quantify the mean and the standard deviation of5

their differences, and thus the effectiveness of the quality-weighting and the relative calibration procedure. In order to compare

reflectivities from different radars, the different viewing geometries must be carefully considered. The polar coordinates of each

radar are transformed into azimuthal equidistant projection coordinates, centered on each radar. Each radar cartesian coordinate

is then transformed into the other radar’s spherical coordinate system, such that each of the radar bins of the TAG radar have

coordinates with respect to the SUB radar, and vice versa. For this purpose, we use the georeferencing module of the wradlib10

library (https://wradlib.org) which allows for transforming between any spherical and Cartesian reference systems. Bins of the

TAG radar that are less than 120 km away from the SUB radar are chosen. The same is done for bins of the SUB radar. In order

to match only bins of similar volume, Seo et al. (2014) suggested a matching zone of 3 km within the equidistant line between

the two radars. We decided to make this requirement less strict in order to include more matches, and thus extended this range

to 10 km. From the selected bins, each SUB bin is matched with the closest TAG bin, not exceeding 250 m in distance. The15

matching SUB and TAG bins are exemplarily shown in black in Figure 3 for the 0.5 degree elevation angle, such that each

black bin in the SUB row corresponds with a black bin in the TAG row.

3.4 Estimation of path-integrated attenuation

Atmospheric attenuation depends on the radar’s operating frequency (Holleman et al., 2006). For radar signals with wave-

lengths below 10 cm (such as C- and X-band radars), significant attenuation due to precipitation can occur (Vulpiani et al.,

2006), depending on precipitation intensity (Holleman et al., 2006). In tropical areas such as the Philippines, where torrential

rains and typhoons abound, C-band radars suffer from substantial PIA.5

In this study, we require PIA estimates as a quality variable to assign different weights of GR reflectivity samples when

computing quality-weighted averages of reflectivity (see section 3.6). For that purpose, PIA is estimated by using dual-pol

moments observed by the TAG radar. The corresponding procedure includes the removal of non-meteorological echoes based

on a fuzzy echo classification, and the reconstruction of the differential propagation phase from which PIA is finally estimated.

7

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-126
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 29 April 2019
c© Author(s) 2019. CC BY 4.0 License.



The method is based on Vulpiani et al. (2012), and was comprehensively documented and verified for the TAG radar by10

Crisologo et al. (2014) which is why we only briefly outline it in the following.

The fuzzy classification of meteorological vs. non-meteorological echoes was based on the following decision variables:

the Doppler velocity, the copolar cross-correlation, the textures (Gourley et al., 2007) of differential reflectivity, copolar cross-

correlation, and differential propagation phase (ΦDP ), and a static clutter map. The parameters of the trapezoidal membership

functions as well as the weights of the decision variables are specified in Table 2 of Crisologo et al. (2014). Bins classified15

as non-meteorological were removed from the beam profile and then filled in the subsequent processing step. In that step, a

clean ΦDP profile is reconstructed by removing the effects of wrapping, system offset and residual artifacts. The reconstruction

consists of an iterative procedure in which KDP is repeatedly estimated from ΦDP using a convolutional filter, and ΦDP again

retrieved from KDP via integration, after filtering spurious and physically implausible KDP values.

According to Bringi et al. (1990), specific attenuation, αhh (dB km−1), is linearly related to KDP by a coefficient γhh (dB20

deg−1) which we assume to be constant in time and space with a value of γhh = 0.08 (Carey et al., 2000). Hence, the two-way

path-integrated attenuation, Ahh (dB), can then be obtained from the integral of the specific attenuation along each beam -

which is equivalent to our reconstructed ΦDP from which the system offset (ΦDP (r0)) was removed in the previous step.

Ahh(s) = 2

r∫

r0

αhh(s)ds (1)

= 2γhh

r∫

r0

KDP (s)ds (2)25

= γhh(ΦDP (r)−ΦDP (r0)) (3)

3.5 Beam Blockage

In regions of complex topography, the ground radar beam can be totally or partially blocked by topographic obstacles, resulting

in weakening or loss of the signal. To simulate the extent of beam blockage for each ground radar, as introduced by topography,

we used the algorithm proposed by Bech et al. (2003), together with the Shuttle Radar Topography Mission (SRTM) DEM30

with a 1 arc-second (approximately 30 m) resolution. The procedure has been documented in Crisologo et al. (2018) in more

detail. In summary, the values of the DEM are resampled to the radar bin centroid coordinates to match the polar resolution of

the radar data. Then, the algorithm computes the beam blockage fraction for each radar bin by comparing the elevation of the

radar beam in that bin with the terrain elevation. Finally, the cumulative beam blockage fraction (BBF) is calculated for all the

bins along each ray, where a value of 1.0 corresponds to total occlusion and a value of 0.0 to complete visibility.5
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Figure 3. The beam blockage quality index (QBBF ) for the two radars is shown in the background for each corresponding elevation angle.

Black points show the locations of matched bins between SUB and TAG for each radar coverage, exemplarily for an elevation of 0.5 degree.

3.6 Quality index and quality-weighted averaging

The quality index is a quantity used to describe data quality, represented by numbers ranging from 0 (poor quality) to 1

(excellent quality), with the objective of characterizing data quality independent of the source, hardware, and signal processing

(Einfalt et al., 2010).

To calculate a quality index for the beam blockage fraction, the transformation function suggested by Zhang et al. (2011) is10

used:

QBBF =





1 BBF ≤ 0.1

1− BBF−0.1
0.4 0.1<BBF ≤ 0.5

0 BBF > 0.5





(4)

Figure 3 shows the beam blockage quality index (QBBF ) maps of SUB and TAG for the lowest elevation angle. Subic is

substantially affected by beam blockage in the northern and southern sector, due to the radar sitting between two mountains

along a mountain range. The southern beam blockage sector of the Subic radar clearly affects the region of overlap with the15

Tagaytay radar. Meanwhile, TAG has a clearer view towards the north, with only a narrow sector to the east and partially in

the south being affected by very high beam blockage. It is not shown in the figure, but the higher elevation angles of the TAG

radar are not affected by any beam blockage.
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For path-integrated attenuation, the values are transformed into a quality index as

QPIA =





1 for Kr,s <Kmin

0 for Kr,s >Kmax

Kmax−Kr,s

Kmax−Kmin
else,





(5)20

following the function proposed by Friedrich et al. (2006), where Kmin and Kmax are the lower and upper attenuation thresh-

olds. The values for Kmin and Kmax are chosen to be 1 dB and 10 dB.

Multiple quality indices from different quality variables can be combined in order to obtain a single index of total quality.

Different combination approaches have been suggested, e.g. by addition or multiplication (Norman et al., 2010), or by weighted

averaging (Michelson et al., 2005). We chose to combine QBBF and QPIA multiplicatively, in order to make sure that a low25

value of either of the two propagates to the total quality index (QGR =QGR,BBF ∗QGR,PIA).

It should be noted thatQSUB,PIA is always considered to have a value of 1, as we consider attenuation negligible for S-band

radars, so that effectively QSUB = QSUB,BBF .

Based on this quality index QGR, we follow the quality-weighting approach as outlined in Crisologo et al. (2018). For each

match between SR and GR bins, the quality Qmatch is obtained from the minimum QGR value of the GR bins in that match.

We then compute the average and the standard deviation of the reflectivity differences between SR and GR by using the Qmatch5

values as linear weights (see Crisologo et al. (2018) for details). We basically follow the same approach when we compute

the quality-weighted average and standard deviation of the differences between the two ground radars, SUB and TAG, in the

region of overlap. Here, the quality Qmatch of each match is computed as the product QSUB ∗QTAG of the two matched GR

bins.

It should be emphasized at this point that, in the region of overlap, the TAG radar is not affected by beam blockage. So while10

the computation of calibration bias for the TAG radar, based on SR overpasses, is affected by QTAG,BBF (as it uses the full

TAG domain), the comparison of SUB and TAG reflectivities is, in fact, only governed by QSUB,BBF and QTAG,PIA.

3.7 Computational details

Following the guidelines for transparency and reproducibility in weather and climate sciences as suggested by Irving (2016), we

have made the entire processing workflow and sample data available online at (https://github.com/IreneCrisologo/inter-radar).15

The main components of that workflow are based on the open source software library for processing weather radar data called

wradlib (Heistermann et al., 2013b), version 1.2 (released on 31.10.2018) based on Python 3.6. The main dependencies of

wradlib include Numerical Python (NumPy; Oliphant (2015), Matplotlib (Hunter, 2007), Scientific Python (SciPy; Jones et al.

(2014)), h5py (Collette, 2013), netCDF4 (Rew et al., 1989), gdal (GDAL Development Team, 2017), and pandas (McKinney,

2010).
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4 Results and Discussion5

The presentation and discussion of results falls into four parts.

1. In section 4.1, we demonstrate the effect of extending the framework of quality-weighting by path-integrated attenuation.

This is done by analysing the mean and the standard deviation of differences between the two ground radars, SUB and

TAG, in different scenarios of quality filtering for a case in December 2014.

2. In section 4.2, we construct a time series of calibration bias estimates for the TAG C-band radar by using the extended10

quality-averaging framework together with spaceborne reflectivity observations from TRMM and GPM overpass events.

This time series complements the calibration bias estimates we had already gathered for the SUB S-band radar in Crisol-

ogo et al. (2018).

3. In section 4.3, we use the calibration bias estimates for SUB and TAG in order to correct the GR reflectivity mea-

surements, and investigate whether that correction is in fact able to reduce the absolute value of the mean difference15

∆ZTAG−SUB between the two radars. This analysis is done for events in which we have both valid SR overpasses for

both radars and a sufficient number of samples between the two ground radars in the region of overlap.

4. In section 4.4, finally, we evaluate different techniques to interpolate the sparse calibration bias estimates in time, at-

tempting to correct ground radar reflectivity observations also for times in which no overpass data is available. The

effect of different interpolation techniques is again quantified by the mean difference ∆ZTAG−SUB between the two20

ground radars.

4.1 The effect of extended quality filtering: the case of December 9, 2014

In this section, we demonstrate the effect of extending the quality framework by path-integrated attenuation. In Figure 3, we

have already seen that the SUB radar is strongly affected by beam blockage in the region of overlap. Yet, as an S-band radar, it

is not significantly affected by attenuation. For the TAG radar, it is vice versa: not much affected by beam blockage, yet it will25

be affected by atmospheric attenuation during intense rainfall. That setting provides an ideal environment to experiment with

different scenarios of quality filtering. For such an experiment, we chose a heavy rainfall event on December 9, 2014, where

there are sufficient radar bins with precipitation in the region of overlap. The scan times are 06:55:14 and 06:57:58 for the SUB

and TAG radars, respectively.

Figure 4 shows scatter plots of matched reflectivities in the region of overlap, combining matched GR bins from all elevation30

angles. Note that in this region of overlap, QSUB is equivalent to QBBF , and QTAG is dominated by QPIA. To illustrate

the individual effects of the quality indices in the comparison, we simply refer to the dominating quality index instead of the

associated radar (i.e. QBBF for SUB and QPIA for TAG). The points in the scatter plot are colored depending on the quality

index of the corresponding matched sample: in Figure 4a, we can see that matches with a very lowQBBF value (i.e. high beam

blockage) are concentrated above the 1:1 line, since beam blockage causes the Subic radar to underestimate in comparison
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to the Tagaytay radar. If we consider each matched sample irrespective of data quality, the mean difference between the two5

radars is 1.7 dB, with a standard deviation of 8.1 dB. Taking QBBF into account changes the mean difference to -1.9 dB—

which is higher in absolute terms—and decreases the standard deviation to 5.5 dB. Figure 4b demonstrates the effect of using

only PIA for quality filtering: Points with low QPIA (i.e. high PIA) are concentrated below the 1:1 line, corresponding to an

underestimation of the TAG radar as compared to the SUB radar. Considering only QPIA for quality-weighting increases the

mean difference between TAG and SUB to a value of 3.5 dB, and decreases the standard deviation just slightly to a value of10

7.5 dB. By combining the two quality factors, we can reduce the absolute value of ∆ZTAG−SUB from 1.7 dBZ to -0.7 dB,

and, more notably, the standard deviation from 8.1 dBZ to 4.6 dBZ (Figure 4c). That effect also becomes apparent in Figure 4d

in which we show how the multiplicative combination of quality factors not only pushes the mean of the differences towards

zero, but also narrows down the distribution of differences dramatically.

Remembering item (2) from section 3.1, it is the reduction of standard deviation that we are most interested in at this point:15

it demonstrates that the two GR become more consistent if we filter systematic errors that are spatially heterogeneous in the

region of overlap. The low absolute value of the mean difference is, for this case study, not a result of correcting for calibration

bias—which is addressed in the following sections.

On the basis of these results, we will, in the following sections, only refer to values of mean and standard deviation of (SR-

GR or GR-GR) differences that are computed by means of quality-weighting, with the quality of a matched sample quantified20

as Qmatch.

4.2 Estimating the GR calibration bias from SR overpass events

In Figure 8a of Crisologo et al. (2018), we had already shown the time series of quality-averaged differences between the SUB

ground radar and the SR platforms TRMM and GPM, using beam blockage as a quality variable. Extending the framework for

quality-weighted averaging by PIA, we have now computed the corresponding time series of quality-weighted mean differences25

for the TAG radar. Figure 5 shows the time series of calibration biases, as estimated from quality-weighted mean differences,

for both SUB and TAG radars for years 2012-2014 and 2016. The first panel is corresponds to Figure 8a of Crisologo et al.

(2018). For SUB, there is a total of 96 SR overpass events that fit the filtering criteria referred to in Section III.2, while for

TAG, we only found 45 matches. Compared to the spaceborne radars, both SUB and TAG are dramatically underestimating

at the beginning of operation in 2012, where the underestimation of the TAG radar is even more pronounced. From 2014, the30

calibration improves for both radars.

As pointed out in Crisologo et al. (2018), there is a strong variability of the estimated calibration biases between overpasses

for SUB. This behaviour can be confirmed for the TAG radar, with particularly drastic cases in 2013. Potential causes for

this short-term variability have been discussed in Crisologo et al. (2018), and could include, e.g., residual errors in the volume

sample intersections, short-term hardware instability, rapid changes in precipitation during the time interval between GR sweep

and SR overpass, and uncertainties in the estimation of PIA, to name a few.
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Figure 4. Scatter plot of reflectivity matches between Tagaytay and Subic radars. The marker color scale represents the data quality based

on (a) beam blockage fraction (QBBF ), (b) path-integrated attenuation (QPIA), and (c) the multiplicative combination of the two (Qmatch),

where the darker colors denote high data quality and lighter colors signify low data quality. The ridgeline plots (d) show the distribution of

the reflectivity differences of the remaining points if we choose points only with high quality index (in this case, we select an arbitrary cutoff

value of Qmatch = 0.7). The mean is marked with the corresponding vertical line.
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Figure 5. Calibration biases derived from comparison of GR with SR for SUB (a) and TAG (b) for the wet seasons (June to December) of

the entire dataset. Symbols are coloured according to the number of matched samples: light grey: 10–99, medium grey: 100–999, and black:

1000+. The red line marks 06 August 2012 for the case study presented in Figure 6.

4.3 The effect of bias correction on the GR consistency: case studies

In this and the following section, we evaluate the effect of using the calibration bias estimates obtained from SR overpasses to

actually correct the GR reflectivity measurements. We start, in this section, by analysing events in which we have both: valid5

SR overpass events for SUB and TAG, as well as a sufficient number of matched GR samples in the region of overlap. That

way, we can directly evaluate how an “instantaneous” estimate of the GR calibration bias estimates affects the GR consistency,

as explained in item (2) of section 3.1. In contrast to section 4.1, in which we focused on the standard deviation of differences

between the two ground radars, we now focus on the mean differences in order to capture the effect of bias correction.

The first case is a particularly illustrative example: an extreme precipitation event that took place right in the region of10

overlap at a time in which both radars, SUB and TAG, apparently were affected by massive miscalibration, according to Figure

6 the so-called Habagat of 2012, an enhanced monsoon event that happened in August 2012 (Heistermann et al., 2013a).

Figure 6a and b illustrate the estimation of the calibration bias for the SUB and TAG radars from TRMM overpass data.

The calibration bias estimates of -5.6 dB (for SUB) and -13.5 dB (for TAG) obtained from those scatter plots correspond to

the dots intersecting the red line in the time series shown in Figure 5. Figure 6c shows the matching reflectivity samples of

the two ground radars, SUB and TAG, in the region of overlap which have not yet been corrected for calibration bias. The

quality-weighted mean difference of reflectivies amounts to -12.2 dB. Accordingly, Figure 6d shows the matches in the region

of overlap, with both SUB and TAG reflectivities corrected for calibration bias, based on the values obtained from Figure 6a
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Table 2. Calibration biases and inter-radar consistencies for different bias calculation scenarios

Npts ∆Z
w
SR−SUB ∆Z

w
SR−TAG ∆Z

nocorr
TAG−SUB ∆Z

w,corr
TAG−SUB

11-06-2012 21:37:41 528 -3.4 -6.3 -3.5 -0.2

06-28-2012 22:14:46 48 -3.5 -5.1 -1.3 -0.2

02-07-2012 20:09:47 1248 -5 -11.4 -7 -2.1

06-08-2012 17:17:23 1121 -5.6 -13.5 -12.3 -4.6

08-31-2012 13:44:31 34 -5.1 -9.3 -1.9 1.1

12-08-2016 11:40:28 1277 -0.3 -2.3 -5.7 -4.3

and b, respectively. The corresponding value of the mean difference amounts to -4.6 dB. These effects are further illustrated by5

Figure 6e which shows the distributions of SR-GR and GR-GR differences before and after bias correction.

The case clearly demonstrates how massive levels of miscalibration (-5.6 and -13.5 dB) can be reduced if an adequate SR

overpass is available. That is proved by the massive reduction of the absolute value of mean difference between the two ground

radars, or, inversely, the massive gain in GR consistency. Yet, the bias could not be entirely eliminated, which suggests that

other systematic sources of error have not been successfully addressed for this case.10

Table 2 summarizes our analysis of five additional events in which valid SR overpasses for both SUB and TAG coincided

with a significant rainfall in the region of overlap between the two ground radars, most of which took place in 2012 (and

one in 2016). Columns ∆Z
w

SR−SUB and ∆Z
w

SR−TAG show varying levels of calibration bias for SUB and TAG, quantified

by the quality-weighted mean difference to the SR observations, together with varying levels of mismatch between the two

ground radars, as shown by column ∆Z
nocorr

TAG−SUB . Using the calibration bias estimates for correcting the GR observations, we15

consistently reduce the quality-weighted mean difference between both ground radars, as expressed by column ∆Z
w,corr

TAG−SUB .

Altogether, the correction of GR reflectivities with calibration bias estimates of SR overpasses dramatically improves the

consistency between the two ground radars which have shown largely incoherent observations before the correction. In all

cases (including the Habagat of 2012), we were able to reduce the mean difference between the ground radars.

The question is now: Can we use these sparse calibration bias estimates also for points in time in which no adequate SR20

overpass data are available? Or, in other words, can we interpolate calibration bias estimates in time?

4.4 Can we interpolate calibration bias estimates in time?

The space-born radar platform (SR) rarely overpasses both GR radar domains in a way that significant rainfall sufficiently ex-

tends over both GR domains including the GR region of overlap. Hence, our previous demonstration of the effective correction

of GR calibration bias yielded only few examples. From a more practical point of view, however, we are more interested in how

we can use SR overpass data for those situations in which adequate SR coverage is unavailable - which is, obviously, rather the

rule than the exception. An intuitive approach is to interpolate the calibration bias estimates from valid SR overpasses in time,

and use the interpolated values to correct GR observations for any point in time. We can do such an interpolation independently
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Figure 6. 3-way case study for 2012-08-06 17:15:47. (a) and (b): Scatter plots of SR-GR comparisons between TRMM and SUB and TAG

radars for points where Qmatch>0.7, where the darkness of the color represents the point density. The corresponding weighted biases are

calculated for each radar. (c) and (d): GR-GR inter-radar consistencies before and after bias correction. (e) Distribution of the differences of

the reflectivity pairs for each comparison scenario.
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for each ground radar, based on the set of valid SR overpasses available for each. In order to examine the effectiveness of such5

an interpolation, we again use the absolute value of the mean difference between the two ground radars as a measure of their

(in-)consistency. Based on the reduction of that absolute value, as compared to uncorrected GR reflectivities, we benchmark

the performance of three interpolation approaches:

1. Linear interpolation in time;

2. Moving average: we compute the calibration bias at any point in time based on calibration bias estimates in a 30-day10

window around that point, together with a triangular weighting function;

3. Seasonal average: For any point in time in the analyzed wet season of a year, we compute the calibration bias as the

average of all calibration bias estimates available in that year.

This benchmark analysis is not considered to be comprehensive, but rather exemplary in terms of examined interpola-

tion techniques. The three techniques illustrate different assumptions on the temporal representativeness of calibration bias15

estimates, as obtained from SR overpasses: a seasonal average reflects a rather low level of confidence in the temporal rep-

resentativeness. The underlying assumption would be that we consider any short-term variability as “noise” which should be

averaged out. The linear interpolation puts more confidence into each individual bias estimate, and assumes that we can actually

interpolate between any two points in time. Obviously, a 30-day moving average is somewhere in between the two.

Table 3. Mean absolute ∆ZTAG−SUB for different correction scenarios and years

Mean absolute ∆ZTAG−SUB (dB)

No correction Seasonal mean Linear interpolation Moving average

All years 4.9 4.0 3.0 2.7

2012 4.4 3.4 2.6 2.3

2013 8.6 7.1 4.5 4.1

2014 4.4 3.8 3.2 2.9

2016 1.8 1.8 1.7 1.7

Table 3 provides an annual summary of the absolute mean differences in reflectivity between the two ground radars, with-20

out bias correction and with correction of bias obtained from different interpolation techniques. Firstly, the mean absolute

difference between the radars is always lower after correction, irrespective of the year or the interpolation method. Hence,

it is generally better to use calibration bias estimates to correct GR reflectivities even for those times in which no valid SR

overpasses are available. The 30-day moving average appears to outperform the other two interpolation methods—on average,

and for each year from 2012 to 2014. In 2016, neither interpolation method substantially reduces the mean absolute difference

obtained for the uncorrected GR data.
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The performance of the moving average suggests that it is possible for the calibration of radars to drift slowly in time, with

variability stemming from sources which are difficult to disentangle. However, for periods of time when the radar is relatively5

well-calibrated and stable, the bias correction only offers a slight, if any, improvement in the consistency between two radars.

Figure 7. The differences between the inter-radar consistency before and after correcting for the ground radar calibration biases following a

rolling window averaging for samples with significant number of matches. The hollow (filled) circles represent the daily mean before (after)

correction. The line color represents an improvement (green) or a decline (pink) in the consistency between the two ground radars.

In order to better understand the variability “behind” the annual averages in Table 3, Figure 7 shows the effects of bias

correction on a daily basis, exemplified for the moving average interpolation. The hollow circles represent the daily mean

differences between the two ground radars before (∆ZTAG−SUB) correction, while the filled circles show the daily mean

differences after (∆Z
w,corr

TAG−SUB) correction. The length of the bar shows the magnitude of the change, while the color of the10

bar signifies a reduction of the absolute value of the mean difference (green, for improvement) or an increase in in the absolute

value (pink, for a degradation of consistency between the two ground radars). In 83 out of 121 days, bias correction improves

the consistency between the two ground radars by more than 1 dB. Inversely, though, this implies that in 17 out of 121 days,

the use of interpolated bias estimates causes a degradation of consistency between the ground radars, expressed as an increase

of more than 1 dB in the absolute mean differences. Furthermore, we can identify several days for which the bias correction15

decreases the absolute mean differences, but not to a level that could be considered as acceptable for quantitative precipitation

estimation.

5 Conclusions

In 2011, Schwaller and Morris had presented a technique to match reflectivity observations from spaceborne radars (SR) and

ground radars (GR). Crisologo et al. (2018) extended that technique by introducing the concept of quality-weighted averaging
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of reflectivity in order to retrieve the GR calibration bias from matching SR overpass data. They exemplified the concept of

quality weighting by using beam blockage as a quality variable, and demonstrated the effectiveness of the approach for the5

Subic S-band radar in the Philippines.

The present study has extended the concept of quality-weighted averaging by accounting for path-integrated attenuation

(PIA) as a quality variable, in addition to beam blockage. Accounting for PIA becomes vital for ground radars that operate at

C- or X-band. In addition to the Subic S-band radar, this study has included the Tagaytay C-band radar which substantially

overlaps with the Subic radar.10

In the first part of this study, we have demonstrated that only accounting for both, beam blockage and path-integrated atten-

uation, allows for a consistent comparison of observations from the two ground radars, Subic and Tagaytay: after transforming

the quality variables “beam blockage fraction” and “path-integrated attenuation” into quality indices QBBF and QPIA, with

values between zero and one, we computed the quality-weighted standard deviation of matching reflectivities in the region of

overlap between the two ground radars for an event on December 9, 2014. Using a quality index based on the multiplicative15

combination of QBBF and QPIA, we were able to dramatically reduce the quality-weighted standard deviation from 8.1 dBZ

to 4.6 dBZ, while usingQBBF andQPIA alone would have only reduced the standard deviation to 5.5 or 7.5 dBZ, respectively.

Based on that result, we have used, with confidence, the combined quality index throughout the rest of the study.

The next step involved the retrieval of the GR calibration bias from SR overpass data for the Tagaytay C-band radar (for the

Subic S-band radar, that had already been done by Crisologo et al. (2018)). For each matched volume in the SR-GR intersection,20

the combined quality index was computed for the Tagaytay radar, and used as weights in calculating the calibration bias as a

quality-weighted average of the differences between SR and GR reflectivities. We applied this approach throughout a 4-year

period to come up with a time series of the historical calibration bias estimates of the TAG radar, and found the calibration of

the TAG radar to be exceptionally poor and volatile in the years 2012 and 2013, with substantial improvements in 2014 and

2016.25

In order to demonstrate the effectiveness of estimating and applying the GR calibration bias obtained from SR overpass

data, we have compared, in the region of overlap, the corrected and uncorrected reflectivities of the Subic and Tagaytay radars,

for six significant rainfall events in which all three instruments—TAG, SUB and the SR—had recorded a sufficient number

of observations. We have shown that the independent bias correction is able to massively increase the consistency of the two

ground radar observations, as expressed by a reduction of the absolute mean difference between the GR observations in the30

region of overlap, for each of the six events—in one case even by almost 7.7 dB. The main lesson from these cases is, that

we can legitimately interpret the quality-weighted mean difference between SR and GR reflectivities as the instantaneous GR

calibration bias, even if the magnitude of that bias varies substantially within short periods of time.

Yet, the question remains how to correct for calibration bias in the absence of useful SR overpasses. That question is par-

ticularly relevant for the reanalysis of archived measurements from single-pol weather radars. In this study, we have evaluated

three different approaches to interpolate calibration bias estimates from SR overpass data in time: linear interpolation, a 30-day

moving average, and a seasonal average. Each of these approaches illustrates different assumptions on the temporal represen-

tativeness of the calibration bias estimates. On average, any of these approaches produced calibration bias estimates that were5
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able to reduce the mean absolute difference between the GR observations, which increases our confidence in the corrected GR

observations. Of all interpolation approaches, the moving 30-day window outperformed the other two approaches. However,

we also found that behind the average improvement of GR-GR consistency, there were also a number of cases in which the

consistency between the ground radars was degraded, or in which high inconsistencies could not be significantly improved.

Altogether, it still appears difficult to interpolate such a volatile behaviour, even if we consider the actual calibration bias10

estimates from the SR overpasses as quite reliable.

In that context, maintenance protocols of the affected ground radars would be very helpful in interpreting and interpo-

lating time series of calibration bias estimates. Such records were unavailable for the present study, which made it hard to

understand the observed variability of calibration bias estimates. Yet, this information will mostly be internally available at

those institutions operating the weather radars. With the software code and sample data of our study being openly available15

(https://github.com/IreneCrisologo/inter-radar), such institutions are now enabled to carry out analyses as the present study

themselves, while being able to benefit from cross-referencing the results with internal maintenance protocols.

The correction of GR calibration appeared particularly effective in periods with massive levels of miscalibration. For such

cases, interpolated bias estimates allowed for an effective improvement of raw GR reflectivities. Yet, we need to continue dis-

entangling different sources of uncertainty for both SR and GR observations in order to separate actual variations in instrument20

calibration and stability from measurement errors that accumulate along the propagation path, and to better understand the

requirements to robustly estimating these properties from limited samples. Progress on these ends should also improve the

potential for interpolating calibration bias estimates in time, in order to tap the potential of historical radar archives for radar

climatology, and to increase the homogeneity of composite products from heterogeneous weather radar networks.
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Doviak, R. J. and Zrnić, D. S.: Doppler radar and weather observations, Academic Press, Mineola, N.Y., 2nd ed., dover ed. edn., 2006.
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